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Outline	



o  PFNS of 239Pu(n,f) : previous measurements tell us 
how to improve systematic uncertainties	



o  Experimental Efforts at ChiNu including MCNP 
calculations	



o  How to deduce PFNS using the ChiNu data	


o  Summary	
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PFNS of 239Pu: High energy measurements 	

	


Current uncertainty : 20~50%	



Knitter (J. Atomkernenergie, 1975)���
Staples et al. (Nucl. Scien. Eng., 1998)	
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LEAD 

Measurement details on Staples vs. Knitter	



1. Neutron source : 
7Li(p,n) with variable-
energy and pulsed 
protons	


2. Fissile samples	


3. Neutron detector : 
liquid scintillators 
(BC501 vs. NE224)	


4. Shadow bar to block 
direct neutrons	



o  TOF measurements	


o  No fission events detected	


o  Significant multiple scattering at thick targets and shielding materials	


o  Corrections & efficiency estimation using Monte Carlo calculations	
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Detector Efficiency ���
(Uncertainty : 5-7 % and 2-5 %)	
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Relative to T(d,n)4He 
angular distributions	



Normalized to 
overlapping different –

calibration reaction sets	



Det. volume	

 Measurements	

 Calculation	



Staples	

 117 cm3	

 235U fission counter (E<3.5 MeV)	

 SCINFUL for the rest energy 	



Knitter	

 75 cm3	

 Multiple reactions (E<20 MeV)	

 Maggie for angular corrections	



Limitations : 	


o  Knitter made a straight line 

connection (not complete) between 
the low- and high-energy data	



o  Staples relied on the SCINFUL 
calculation after calibrating the 
low energy measurement	



curve	
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o  correction for neutron inelastic scatterings	


o  constant background subtraction at ~15 MeV 	


o  γ-peak correction influences the deduced shape of neutron spectrum at 

5-15 MeV	
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PFNS of 239Pu: Low energy measurements	


Current uncertainty ~10% (compilation)	
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o  Time of flight measurements	



o  Detector : 5 different neutron detectors + 2 different fission counters - 
0.1 < En < 2 : Anthracene scintillator (φ =18mm, 4mm thick) at 51 cm���

	

            -The absolute normalization for the efficiency is calculated     
	

 	

using Monte Carlo calculation ���

0.01<En < 5 : Gas scintillation ionization det. & IC at 10~40 cm���
	

           -The efficiency was measured with a 252Cf  source���

- For the rest of detectors, used the complied 252Cf shape (weighted 
average over Starostov, Blinov, Lajtai) to calculate the detector 
efficiencies 	



o  After background subtraction, time spectra were corrected further 
due to multiple scatterings in the target room	



Starostov : notes on 239Pu measurement	
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Lajtai : notes on 239Pu measurement  
Lajtai et al.  NIM A (1990)	



o  6Li-glass detector was used  	


o  7Li-glass detector to measure the delayed g-ray background	


o  Cu shadow cone to estimate neutron background 	


o  Yield = Yield (6Li detector w/o cone) – Yield (6Li detector /w cone)���

              -Yield (7Li detector w/o cone) + Yield(7Li detector /w cone)���
	



Limitations : ���
1. Overestimation of 
shadow bar measurements 
for correcting neutron-
induced background ���
2. Simplified detector 
response simulation 
especially near the 
resonance  
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Chi-Nu project : Reduce unceratinty 	


o  Dedicated Flight Path at 4FP-15L ���

 The 18’ X 18’ X 7’ basement was built for reducing room-returned 
background at low energy	



o  Fission Counter���
Parallel Plate Avalanche Counter : 10 foils with ~ 400 µg/cm2 thickness ���
Timing resolution is ~ 1ns and light mass for low background ���
	



o  High Energy Measurement  (En > 0.7 MeV) : n-γ separation	


      54 Liquid scintillators at 100 cm : EJ309, 17.8 cm dia., 5.08 cm thick ���
	


o  Low Energy Measurement (En < 1 MeV) : well-understood detector 

response function ���
 22 6Li-glass detectors at 40 cm: Scionix10 cm diameter x 18 mm thick 	



R.C. Haight et al. (J. of Instr., 2012)	
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Chi-Nu project : Identify background	



o  Time independent background ���
a. accidental coincidences with thermal neutrons – 235U(n,f) 
measurements ���
b. accidental coincidences with alpha decays – 239Pu(n,f) measurements ���
	



o  Time dependent background ���
a. gamma flash from the neutron beam production – beam energy gate���
b. incident fast neutron scattering on PPAC – Li detector angle 
dependence and beam energy gate���
c. gamma background from various reactions – 7Li detector 
measurements ���
d. neutron multiple scattering – corrections obtained by MCNP 
calculation	
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MCNP calculates detector response for 
monoenergetic neutrons	



6Li glass detector at different energies	

 liquid scintillator with different 
timing resolutions	
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PFN yields of 252Cf using a 6Li-glass detector	



PPAC-ver.1 in the FIGARO room	



10 

H.Y. Lee, T.N. Taddeucci, 
et al. (NIM A, 2013)	



Data using digitizer 
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Fission chamber in the Calibration room	



Low-energy tail is contributed by 	


o  Any hydrogenated material near source and detector	


o  Multiple scattering on surrounding materials	


o  Distance between source and detector 	
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MCNP shows that much of the difference between 
PFNS forms is preserved despite significant 
neutron scattering	



252Cf PPAC-ver.1 at the ChiNu target room (PPAC+ 22 Li-glass detectors 
+ array frame + target room components)	





|  Los Alamos National Laboratory  | 

|  15 Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA 

Unfolding vs. Integral approach to deduce 
PFNS from ChiNu data	



o  Unfolding : ���
Using MCNP detector 
responses, the PFN yield 
can be deconvoluted to 
the PFNS	



o  Integral – double ratio :���
Using the spectrum 
shape-correction factor, 
the PFN yield can be 
corrected in bin-by-bin 
for deducing the PFNS 

Double ratio = MCNP(PFNS)/MCNP(Maxw)/[PFNS/Maxw]	


[PFNS/Maxw] = 1/double-ratio X [Measured ChiNu/ MCNP(Maxw)]	
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Summary	


o  For low energy measurements, any hydrogenated materials near the 

sample should be avoided	


o  Full MCNP Detector response needs to be studied at each setup	


o  Time-dependent background should be well understood and 

corrected	


o  Even with large multiple-scattering effects, ChiNu measurements 

still retain sensitivity to the PFNS	


o  Double-ratio method gives an answer with limited uncertainty, while 

the full unfolding will provide the PFNS with a target precision	
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